Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Upper bound for the decay rate of the joint queue-length distribution in a two-node Markovian queueing system 
著者
和文: 加藤憲一, 牧本直樹, 高橋幸雄.  
英文: Ken'ichi Katou, Naoki Makimoto, Yukio Takahashi.  
言語 English 
掲載誌/書名
和文: 
英文:Queueing Systems 
巻, 号, ページ Volume 58    No. 3    pp. 161-189
出版年月 2008年3月 
出版者
和文: 
英文:Springer Netherlands 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
ファイル
公式リンク http://www.springer.com/business/operations+research/journal/11134
 
DOI https://doi.org/10.1007/s11134-008-9066-9
アブストラクト This paper studies the geometric decay property of the joint queue-length distribution {p(n_{1},n_{2})} of a two-node Markovian queueing system in the steady state. For arbitrarily given positive integers c_{1}, c_{2}, d_{1} and d_{2}, an upper bound eta(c_{1},c_{2}) of the decay rate is derived in the sense exp{limsup{n rightarrow infty} n^{-1}log p(c_{1}n+d_{1},c_{2}n+d_{2})} <= eta(c_{1},c_{2})<1. It is shown that the upper bound coincides with the exact decay rate in most systems for which the exact decay rate is known. Moreover, as a function of c_{1} and c_{2}, eta(c_{1},c_{2}) takes one of eight types, and the types explain some curious properties reported in the paper.

©2007 Institute of Science Tokyo All rights reserved.