Cooper and Wadler introduced the RPC calculus, which is obtained by incorporating a mechanism for remote procedure calls (RPC) into the lambda calculus. The location where a caller’s code is executed is designated in a lambda abstraction in the RPC calculus. Nishizaki et al. proposed a simplified abstract machine for the lambda calculus, known as a Simple Abstract Machine (SAM). The configuration of an SECD machine is a quadruple of data sequences: Stack, Environment, Code, and Dump. In contrast, the SAM configuration is a double of data sequences: Stack and Code. In this paper, we introduce a SAM-based abstract machine for the RPC calculus, called a Location-aware Simple Abstract Machine (LSAM). This machine makes it possible to model parallelism more clearly. We provide a translation of the RPC calculus into LSAM, and prove a correctness theorem for the translation. We then show that the translation can be extended to allow parallel execution in LSAM.