We investigate the effects of a niobium-doped titanium dioxide (TiO2:Nb) diffusion barrier layer on the performance of silicon quantum dot superlattice (Si-QDSL) solar cells. The insertion of a 2-nm-thick TiO2:Nb layer significantly reduces phosphorus diffusion from a highly doped n-type layer into a Si-QDSL layer during thermal annealing at 900 °C. The phosphorous concentration in the Si-QDSL layer of the solar cell with the TiO2:Nb diffusion barrier layer was found to be less than 1018 cm-3, which is approximately two orders of magnitude lower than that of the solar cell without the diffusion barrier layer. The reduction in phosphorous concentration leads to the improvement of photo-generated carrier collection in the Si-QDSL layer. The short circuit current density of the solar cell with the diffusion barrier layer was dramatically improved to 1.6 mA/cm2 without the degradation of open circuit voltage and fill factor.