Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Statistical Parametric Speech Synthesis Based on Gaussian Process Regression 
著者
和文: 郡山 知樹, 能勢 隆, 小林 隆夫.  
英文: Tomoki Koriyama, Takashi Nose, Takao Kobayashi.  
言語 English 
掲載誌/書名
和文: 
英文:IEEE Journal of Selected Topics in Signal Processing 
巻, 号, ページ Vol. 8    No. 2    pp. 173-183
出版年月 2014年4月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
ファイル
公式リンク http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6609068
 
DOI http://dx.doi.org/10.1109/JSTSP.2013.2283461
アブストラクト This paper proposes a statistical parametric speech synthesis technique based on Gaussian process regression (GPR). The GPR model is designed for directly predicting frame-level acoustic features from corresponding information on frame context that is obtained from linguistic information. The frame context includes the relative position of the current frame within the phone and articulatory information and is used as the explanatory variable in GPR. Here, we introduce cluster-based sparse Gaussian processes (GPs), i.e., local GPs and partially independent conditional (PIC) approximation, to reduce the computational cost. The experimental results for both isolated phone synthesis and full-sentence continuous speech synthesis revealed that the proposed GPR-based technique without dynamic features slightly outperformed the conventional hidden Markov model (HMM)-based speech synthesis using minimum generation error training with dynamic features.

©2007 Institute of Science Tokyo All rights reserved.