We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These features mean that a transducer made of titanium has good properties for use in such an environment. We have fabricated and evaluated the ultrasonic motor in a cryogenic environment and an intense magnetic field. We have simulated the thermal stress applied to PZT in consideration of nonlinear material properties in the cryogenic environment. The thermal stress of the titanium transducer is smaller than that of the SUS304 transducer. Moreover, we have achieved driving of the ultrasonic motor at 4.5 K. Additionally, we have confirmed that there is little effect of the intense magnetic field on the driving of the motor.