Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Graph based automatic process planning system for multi-tasking machine 
著者
和文: 朱 疆, 加藤 雅人, 田中 智久, 吉岡 勇人, 齋藤 義夫.  
英文: Jiang ZHU, Masato KATO, Tomohisa TANAKA, Hayato YOSHIOKA, Yoshio SAITO.  
言語 English 
掲載誌/書名
和文: 
英文:Journal of Advanced Mechanical Design, Systems, and Manufacturing 
巻, 号, ページ Vol. 9    No. 3   
出版年月 2015年8月7日 
出版者
和文: 
英文:The Japan Society of Mechanical Engineers 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク https://www.jstage.jst.go.jp/article/jamdsm/9/3/9_2015jamdsm0034/_article
 
DOI https://doi.org/10.1299/jamdsm.2015jamdsm0034
アブストラクト Multi-tasking machine is capable of performing both milling and turning operations, it contributes to highly efficient machining and space conservation. However, prior to machining a lot of lead time is consumed in deciding efficient process plan, and generating machining tool path. Although the current CAM systems are highly integrated, the efficiency of the generated tool path is highly relied on the experience of the CAM programmer. In this research, an automatic process planning system for multi-tasking machine was developed. It is capable of recognizing manufacturing features and deciding efficient process plan from CAD model automatically. In this developed system, the CAD model is described as Attributed Adjacency Graph (AAG), and each feature is defined by AAG and its geometrical properties. Totally 8 milling features and 9 turning features can be recognized. The optimal machining plan is calculated based on machining cost evaluation. In addition, in this research a new method based on subfeature combination is proposed in order to recognize intersecting features. Furthermore, in this research the connection relationship of each feature is classified, and machining priority is assigned to adjacent features. It prevents the time consuming evaluation for checking all possible machining sequences. Finally, according to the experiment results, it is confirmed this developed system is capable of obtaining optimal machining plan properly and rapidly.

©2007 Institute of Science Tokyo All rights reserved.