Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Fast Sparse Matrix Vector Multiplication with Highly-Compressed Sparse Format 
著者
和文: 長坂 侑亮.  
英文: Yusuke Nagasaka.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 2016年4月4日 
出版者
和文: 
英文: 
会議名称
和文: 
英文:GPU Technology Conference (GTC2016) 
開催地
和文: 
英文:San Jose 
アブストラクト We show the acceleration of sparse matrix vector multiplication (SpMV) on GPU by highly reducing memory traffic. SpMV is a dominant kernel in many sparse algorithms. The performance of SpMV is strongly limited by memory bandwidth and lower locality of memory access to input vector causing performance degradation. We propose new sparse matrix format, which alleviates these problems about memory bound by adaptive multi-level blocking techniques and compressing the index of the given matrix. Performance evaluations of SpMV for 40 matrix datasets show that we achieve speedups of x2.91 on maximum and x1.81 on average compared to NVIDIA's cuSparse library. We also find out the memory traffic in SpMV can be estimated and the performance of SpMV strongly depends on the memory traffic.

©2007 Institute of Science Tokyo All rights reserved.