Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Data-driven Prediction system for an environmental smartification approach to child fall accident prevention in a daily living space 
著者
和文: 能勢 翼, 北村 光司, 大野 美喜子, 大倉典子, 西田 佳史.  
英文: Tsubasa Nose, Koji Kitamura, Mikiko Oono, Michiko Ohkura, Yoshifumi Nishida.  
言語 English 
掲載誌/書名
和文: 
英文:Procedia Computer Science 
巻, 号, ページ Vol. 160        pp. 126-133
出版年月 2019年11月6日 
出版者
和文: 
英文: 
会議名称
和文: 
英文:the 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN) 
開催地
和文: 
英文:Comibra 
公式リンク https://www.sciencedirect.com/science/article/pii/S1877050919316679
 
DOI https://doi.org/10.1016/j.procs.2019.09.452
アブストラクト Ten thousand children are admitted to emergency rooms due to accidents every year in Tokyo. The most frequent accident is a fall accident. Fall accidents may occur when climbing to a high place in a daily living space. Since injury prevention by human supervision does not work well, the World Health Organization recommends an environmental modification approach as an effective preventive countermeasure to this problem. However, even for advanced human modeling technology, predicting where children can climb in everyday life situations remains difficult. In the present study, the authors developed a new method for predicting places that children can climb in a data-driven manner by integrating RGB-D cameras (Microsoft Kinect), a behavior recognition system (OpenPose), and a climbing motion planning algorithm based on a rapidly exploring random tree. The present paper describes fundamental functions of the developed system and presents an evaluation of the feasibility of the prediction function.

©2007 Institute of Science Tokyo All rights reserved.