Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Content Type Distribution and Readability of MOOCs 
著者
和文: CARLON May Kristine Jonson, Keerativoranan Nopphon, クロス ジェフリー スコット.  
英文: May Kristine Jonson Carlon, Nopphon Keerativoranan, Jeffrey Scott Cross.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 2020年8月 
出版者
和文: 
英文:Association for Computing Machinery 
会議名称
和文: 
英文:Seventh ACM Conference on Learning @ Scale 
開催地
和文: 
英文: 
公式リンク https://dl.acm.org/doi/abs/10.1145/3386527.3405950
 
DOI https://doi.org/10.1145/3386527.3405950
アブストラクト Massive open online courses (MOOCs) provide a great opportunity to use multiple means of information representation through a mixture of various media such as text, graphics, and video, among others. However, most research on MOOCs focused on learning analytics and not much attention is given to content analysis. We gathered all text corpora and video transcripts of selected MOOCs using a web crawler and looked at word counts, clustered by distribution, and measured readability of the crawled data. Analyzing content distribution allows for a comparison of MOOCs regardless of topics, thus giving us an idea of what most course developers might think is ideal in terms of content distribution. This comparison along with readability analysis can be useful for course pre-run quality assessment and gauging content sufficiency.

©2007 Institute of Science Tokyo All rights reserved.