Home >

news ヘルプ

論文・著書情報


タイトル
和文:Machine learning-driven electronic identifications of single pathogenic bacteria 
英文:Machine learning-driven electronic identifications of single pathogenic bacteria 
著者
和文: 服部翔太, 関戸凜太郎, Iat Wai Leong, 筒井 真楠, 有馬 彰秀, 田中祐圭, 横田 一道, 鷲尾 隆, 川井 知二, 大河内美奈.  
英文: Shouta Hattori, Rintaro Sekido, Iat Wai Leong, Makusu Tsutsui, Akihide Arima, Masayoshi Tanaka, Kazumichi Yokota, Takashi Washio, Tomoji Kawai, Mina Okochi.  
言語 English 
掲載誌/書名
和文:Scientific Reports 
英文:Scientific Reports 
巻, 号, ページ        
出版年月 2020年12月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク http://dx.doi.org/10.1038/s41598-020-72508-3
 
DOI https://doi.org/10.1038/s41598-020-72508-3
アブストラクト <jats:title>Abstract</jats:title> <jats:p>A rapid method for screening pathogens can revolutionize health care by enabling infection control through medication before symptom. Here we report on label-free single-cell identifications of clinically-important pathogenic bacteria by using a polymer-integrated low thickness-to-diameter aspect ratio pore and machine learning-driven resistive pulse analyses. A high-spatiotemporal resolution of this electrical sensor enabled to observe galvanotactic response intrinsic to the microbes during their translocation. We demonstrated discrimination of the cellular motility via signal pattern classifications in a high-dimensional feature space. As the detection-to-decision can be completed within milliseconds, the present technique may be used for real-time screening of pathogenic bacteria for environmental and medical applications.</jats:p>

©2007 Institute of Science Tokyo All rights reserved.