Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Topology of Pareto sets of strongly convex problems 
著者
和文: 濱田 直希, 早野 健太, 一木俊助, 加葉田 雄太朗, 寺本 央.  
英文: Naoki Hamada, Kenta Hayano, Shunsuke Ichiki, Yutaro Kabata, Hiroshi Teramoto.  
言語 English 
掲載誌/書名
和文: 
英文:SIAM Journal on Optimization 
巻, 号, ページ 30    3    2659--2686
出版年月 2020年9月28日 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク https://epubs.siam.org/doi/abs/10.1137/19M1271439
 
DOI https://doi.org/10.1137/19M1271439
アブストラクト A multiobjective optimization problem is simplicial if the Pareto set and front are homeomorphic to a simplex and, under the homeomorphisms, each face of the simplex corresponds to the Pareto set and front of a subproblem that treats a subset of objective functions. In this paper, we show that strongly convex problems are simplicial under a mild assumption on the ranks of the differentials of the objective mappings. We further prove that one can make any strongly convex problem satisfy the assumption by a generic linear perturbation, provided that the dimension of the source is sufficiently larger than that of the target. We demonstrate that the location problems, a biological modeling, and the ridge regression can be reduced to multiobjective strongly convex problems via appropriate transformations preserving the Pareto ordering and the topology.

©2007 Institute of Science Tokyo All rights reserved.