It is generally thought that younger people are more susceptible to cancer development after exposure to ionizing radiation in reference to epidemiological studies and animal experiments. However, little is known about the age-dependent alteration in DNA repair ability. In the present study, we examined the expression levels of proteins involved in the repair of DNA double-strand breaks through non-homologous end joining, i.e., DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray repair cross-complementing 4 (XRCC4) and XRCC4-like factor (XLF). We found that the expression of DNA-PKcs in brain tissues was higher in neonatal mice (1 week after birth) than in young adult mice (7 weeks after birth). In association with this, DNA double-strand breaks were repaired more rapidly in the brain tissues of neonatal mice than in those of young adult mice. The current results suggested a possible role for DNA-PKcs protecting developing brain tissues from DNA double-strand breaks.