Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Metric-Type Identification for Multi-Level Header Numerical Tables in Scientific Papers 
著者
和文: Lya Hulliyyatus Suadaa, 上垣外 英剛, 奥村 学, 高村 大也.  
英文: Lya Hulliyyatus Suadaa, Hidetaka Kamigaito, Manabu Okumura, Hiroya Takamura.  
言語 English 
掲載誌/書名
和文: 
英文:Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics 
巻, 号, ページ Main Volume        Page 3062–3071
出版年月 2021年4月19日 
出版者
和文: 
英文:Association for Computational Linguistics (ACL) 
会議名称
和文: 
英文:The 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021) 
開催地
和文: 
英文: 
公式リンク https://www.aclweb.org/anthology/2021.eacl-main.267/
 
アブストラクト Numerical tables are widely used to present experimental results in scientific papers. For table understanding, a metric-type is essential to discriminate numbers in the tables. We introduce a new information extraction task, metric-type identification from multi-level header numerical tables, and provide a dataset extracted from scientific papers consisting of header tables, captions, and metric-types. We then propose two joint-learning neural classification and generation schemes featuring pointer-generator-based and BERT-based models. Our results show that the joint models can handle both in-header and out-of-header metric-type identification problems.

©2007 Institute of Science Tokyo All rights reserved.