Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Towards Table-to-Text Generation with Numerical Reasoning 
著者
和文: Lya Hulliyyatus Suadaa, 上垣外 英剛, 船越 孝太郎, 奥村 学, 高村 大也.  
英文: Lya Hulliyyatus Suadaa, Hidetaka Kamigaito, Kotaro Funakoshi, Manabu Okumura, Hiroya Takamura.  
言語 English 
掲載誌/書名
和文: 
英文:Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing 
巻, 号, ページ Volume 1 (Long Paper)        Page 1451–1465
出版年月 2021年8月 
出版者
和文: 
英文:Association for Computational Linguistics (ACL) 
会議名称
和文: 
英文:The 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021) 
開催地
和文: 
英文: 
公式リンク https://aclanthology.org/2021.acl-long.115/
 
アブストラクト Recent neural text generation models have shown significant improvement in generating descriptive text from structured data such as table formats. One of the remaining important challenges is generating more analytical descriptions that can be inferred from facts in a data source. The use of a template-based generator and a pointer-generator is among the potential alternatives for table-to-text generators. In this paper, we propose a framework consisting of a pre-trained model and a copy mechanism. The pre-trained models are fine-tuned to produce fluent text that is enriched with numerical reasoning. However, it still lacks fidelity to the table contents. The copy mechanism is incorporated in the fine-tuning step by using general placeholders to avoid producing hallucinated phrases that are not supported by a table while preserving high fluency. In summary, our contributions are (1) a new dataset for numerical table-to-text generation using pairs of a table and a paragraph of a table description with richer inference from scientific papers, and (2) a table-to-text generation framework enriched with numerical reasoning.

©2007 Institute of Science Tokyo All rights reserved.