The phenomenon of blinking is unique to single-mol. fluorescence measurements. By designing a fluorophore with an appropriate dark-state lifetime マ�off, a kinetic anal. based on the control of fluorescence blinking (KACB) was devised to investigate the dynamics of biomols. By controlling the redox-reaction-based blinking (rKACB), conformational dynamics of RNA at the single-mol. level was previously investigated. However, there is little knowledge about suitable fluorescent mols. for rKACB, and the application of rKACB has been limited to the anal. of hairpins and duplex structures of nucleic acids. In this work, various fluorescent mols., including Alexa 488, R6G, TAMRA, ATTO 647N and ATTO 655, were evaluated for rKACB. Moreover, rKACB was adapted to the discrimination of DNA/DNA and DNA/RNA nucleic acid duplexes and investigation of antigen-antibody interactions. By changing the size of the oxidant, it was possible to determine the solvent accessibility of the target domain of the analyzed biomols.