Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:High-performance, semiconducting membrane composed of ultrathin, single-crystal organic semiconductors 
著者
和文: Tatsuyuki Makita, 熊谷 翔平, Akihito Kumamoto, 三谷 真人, Junto Tsurumi, Ryohei Hakamatani, Mari Sasaki, 岡本 敏宏, Yuichi Ikuhara, Shun Watanabe, Jun Takeya.  
英文: Tatsuyuki Makita, Shohei Kumagai, Akihito Kumamoto, Masato Mitani, Junto Tsurumi, Ryohei Hakamatani, Mari Sasaki, Toshihiro Okamoto, Yuichi Ikuhara, Shun Watanabe, Jun Takeya.  
言語 English 
掲載誌/書名
和文: 
英文:Proceedings of the National Academy of Sciences 
巻, 号, ページ Vol. 117    No. 1    Page 80-85
出版年月 2020年1月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク http://dx.doi.org/10.1073/pnas.1909932116
 
DOI https://doi.org/10.1073/pnas.1909932116
アブストラクト <jats:p>Thin film transistors (TFTs) are indispensable building blocks in any electronic device and play vital roles in switching, processing, and transmitting electronic information. TFT fabrication processes inherently require the sequential deposition of metal, semiconductor, and dielectric layers and so on, which makes it difficult to achieve reliable production of highly integrated devices. The integration issues are more apparent in organic TFTs (OTFTs), particularly for solution-processed organic semiconductors due to limits on which underlayers are compatible with the printing technologies. We demonstrate a ground-breaking methodology to integrate an active, semiconducting layer of OTFTs. In this method, a solution-processed, semiconducting membrane composed of few-molecular-layer–thick single-crystal organic semiconductors is exfoliated by water as a self-standing ultrathin membrane on the water surface and then transferred directly to any given underlayer. The ultrathin, semiconducting membrane preserves its original single crystallinity, resulting in excellent electronic properties with a high mobility up to 12<jats:inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" overflow="scroll"><m:msup><m:mrow><m:mi mathvariant="normal">c</m:mi><m:mi mathvariant="normal">m</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msup><m:mo>⋅</m:mo><m:msup><m:mrow><m:mi mathvariant="normal">V</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>1</m:mn></m:mrow></m:msup><m:mo>⋅</m:mo><m:msup><m:mrow><m:mi mathvariant="normal">s</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>1</m:mn></m:mrow></m:msup></m:math></jats:inline-formula>. The ability to achieve transfer of wafer-scale single crystals with almost no deterioration of electrical properties means the present method is scalable. The demonstrations in this study show that the present transfer method can revolutionize printed electronics and constitute a key step forward in TFT fabrication processes.</jats:p>

©2007 Institute of Science Tokyo All rights reserved.