|
秋山貴幸 研究業績一覧 (11件)
- 2024
- 2023
- 2022
- 2021
- 2020
- 全件表示
論文
-
Akiyama, T.,
Hachiya, H.,
Sugiyama, M..
Efficient exploration through active learning for value function approximation in reinforcement learning.,
NeuralNetworks,
Vol. 23,
no. 5,
pp. 639-648,
2010.
-
Hachiya, H.,
Akiyama, T.,
Sugiyama, M.,
Peters, J..
Adaptive importance sampling for value function approximation in off-policy reinforcement learning.,
Neural Networks,
vol. 22,
no. 10,
pp. 1399-1410,
2009.
国際会議発表 (査読有り)
-
Sugiyama. M.,
Hachiya, H.,
Akiyama, T..
Robot control by reinforcement learning: A machine-learning approach.,
the 9th Control Division Conference,
In Proceedings of the Society of Instrument and Control Engineers,
no. FC1-3,
Mar. 2009.
-
Akiyama, T.,
Hachiya, H.,
Sugiyama. M..
Statistical active learning for efficient value function approximation in reinforcement learning.,
Meeting of IEICE Neurocomputing (NC) Technical Group,,
IEICE Technical Report, NC2008-147,
pp. 261-266,
2009.
-
Akiyama, T.,
Hachiya, H.,
Sugiyama, M..
Active policy iteration: Efficient exploration through active learning for value function approximation in reinforcement learning.,
the Twenty-First International Joint Conference on Artificial Intelligence(IJCAI2009),
In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI2009),,
pp. 980-985,
2009.
-
Hachiya, H.,
Akiyama, T.,
Sugiyama, M.,
Peters, J..
Efficient data reuse in value function approximation.,
In Proceeding of the 2009 IEEE International Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL2009),
pp. 8-15,
2009.
-
Akiyama, T.,
Hachiya, H.,
Sugiyama, M..
Efficient exploration through active learning for value function approximation in reinforcement learning.,
The Fourth International Workshop on Data-Mining and Statistical Science(DMSS2009),
Proceeding of The Fourth International Workshop on Data-Mining and Statistical Science(DMSS2009),
pp. 1-21,
2009.
-
Hachiya, H.,
Akiyama, T.,
Sugiyama, M.,
Peters, J..
Adaptive importance sampling with automatic model selection in value function approximation,
the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08),
In Proceeding of the Twenty -Third AAAI Conference on Artificial Intelligence(AAAI2008),
pp. 1351-1356,
2008.
-
Akiyama, T.,
Hachiya, H.,
Sugiyama, M..
A new method of model selection for value function approximation in reinforcement learning.,
the Japanese Society for Artificial Intelligence,
In Proceeding of the Japanese Society for Artificial Intelligence,,
pp. 55-60,
2008.
国際会議発表 (査読なし・不明)
-
Hachiya, H.,
Akiyama, T.,
Sugiyama, M..
Adaptive importance sampling with automatic model selection in value function approximation,
IEICE Neurocomputing (NC) Technical Group,
IEICE Technical Report,NC2007-84,,
pp. 75-80,
2007.
国内会議発表 (査読なし・不明)
[ BibTeX 形式で保存 ]
[ 論文・著書をCSV形式で保存
]
[ 特許をCSV形式で保存
]
|