|
QUTianyi 研究業績一覧 (6件)
国際会議発表 (査読有り)
-
Qu T.,
Yang Y.,
Jin Z.,
Suzuki K..
Annotation-free AI learning of lung nodule segmentation in CT using weakly-supervised Massive -training Artificial neural networks,
Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA 2024),
Dec. 2024.
-
Yang S.,
Xiang M.,
Qu T.,
Jin Z.,
Suzuki K..
Reconstruction of Fast Acquisition MRI with Under-sampled K-space Data by Using Massive-Training Artificial Neural Networks (MTANNs),
Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA),
Nov. 2023.
-
Jin Z.,
Pang M.,
Qu T.,
Oshibe H.,
Sasage R.,
Suzuki K..
Feature Map Visualization for Explaining Black-Box Deep Learning Model in Liver Tumor Segmentation,
Scientific Assembly and Annual Meeting of Radiological Society of North America (RSNA),
Nov. 2023.
-
Ze Jin,
Maolin Pang,
Yuqiao Yang,
Fahad Parvez Mahdi,
Tianyi Qu,
Ren Sasage,
Kenji Suzuki.
Explaining Massive-Training Artificial Neural Networks in Medical Image Analysis Task Through Visualizing Functions Within the Models,
The 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023),
Lecture notes in computer science, LNCS,
Oct. 2023.
-
Yang S.,
Xiang M.,
Qu T.,
Jin Z.,
Suzuki K..
Under-sampled Image Reconstruction in Fast Acquisition MRI with Massive-Training Artificial Neural Networks (MTANNs) Deep Learning Approach,
45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2023),
July 2023.
-
Pang M.,
Jin Z.,
Qu T.,
Mahdi F. P.,
Sasage R.,
Suzuki K..
Functional Model Visualization for Explaining Massive-Training Artificial Neural Network for Liver Tumor Segmentation,
45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC 2023),
July 2023.
[ BibTeX 形式で保存 ]
[ 論文・著書をCSV形式で保存
]
[ 特許をCSV形式で保存
]
|